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So far ...

* Nov. 11, 2019

 Basic classification
e Orange hands on data visualization and classification

* Dec. 11, 2019

 Fitting and overfitting
* Data leakage
* Decision boundary
* Evaluation methods

 Classification evaluation metrics: confusion matrix, TP, FP, TN, FN, accuracy, precision,
recall, F1, ROC

* Imbalanced data and unequal misclassification costs
* Probabilistic classification
* Naive Bayes classifier



So far ...

 Dec. 18 2019

* Naive Bayes classifier
* Laplace estimate
* Regression (numeric prediction) and its evaluation

* Jan. 13, 2020

e Association rules
* Jan. 15, 2020

* Neural networks



Predictive induction

Data mining techniques
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Clustering

e ... isthe process of grouping the data instances into clusters so that
objects within a cluster have high similarity but are very dissimilar to
objects in other clusters.

* Wish list:
* |dentity clusters irrespective of their shapes
* Scalability
 Ability to deal with noisy data



Unsupervised classification



Data summarization: centroid, medoid
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Outlier detection



Outlier detection




Applications

* Data mining
* Unsupervised classification
* Data summarization
* QOutlier analysis

* Customer segmentation and collaborative filtering
* Text applications
* Social network analysis



Clustering web search results

about | products | solutions | press | partners | support
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Clustering types

* Partitioning
* k-means,

* Hierarchical
* Agglomerative

* Density-based

* A clusteris a dense region of points, which is separated by low density regions, from
other regions of high density

e Algorithms: DBSCAN,



Interactive k-Means (Educational)

| k5

K-Means example

Random initialization Centroid computation Assignment of points to the nearest centroid

Centroid computation Assignment of points to the nearest centroid Centroid computation



K-means

1. Choose k random instances as cluster centers
Assign each instance to its closest cluster center

3. Re-compute cluster centers by computing the average (aka centroid) of the
instances pertaining to each cluster

4. If cluster centers have moved, go back to Step 2

(Equivalent termination criterion: stop when assignment of instances to cluster centers
has not changed)

Alternatives: K-medoids, K-modes

* Might get stuck in local minima
e Silhuette for finding the optimal K



Lab exercise: clustering on drawings

* Draw the following images in PaintData
* Four snowballs
* A snowman

Data
* Asmiley face A
* An apple tree Paint Data
* Compare

e K-means

Data



Properties of k-Means

The number of clusters k is fixed in advance

It is fast, it always converges

Can converge into a local minima (bad solution because of unlucky
start)

Finds “spherical” shaped clusters

K-Means will cluster the data even if it can’t be clustered (e.g. data
that comes from uniform distributions)




Clustering evaluation

* Clustering analysis doesn’t have a solid evaluation metric

e External validation criteria
e Using the ground truth to evaluate to evaluate the clustering result

* Internal validation criteria
* Sum of distances to centroids
* Intracluster to intercluster distance ratio
e Silhouette coefficient

* Parameter tuning — the “elbow” method

Aggarwal, Charu C. Data mining: the textbook. Springer, 2015. Chapter 6: cluster analysis, pgs 195 -201



Silhouette coefficient

* The silhouette value is a measure of how similar an object is to its own cluster
(cohesion) compared to other clusters (separation).

* For example x, its silhouette coefficient is si = (bi — a;)/ max(a;, bj)
* 3, average distance between x; to all other examples in its cluster.
* b, average distance between x; to the examples in the “neighboring” cluster

* The overall silhouette coefficient is the average of the data point-specific
coefficients.




k-Means + Silhouette + , reruns”

Silhouette Scores

o k-Means
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Orange workflow

* How can we use the silhouette coefficient for searching for outliers in
classification problems?
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Agglomerative clustering - example
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Agglomerative clustering - dendrogram

Hierarchical Clustering Dendrogram
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Agglomerative clustering

1. Start with a collection C of n singleton clusters
* Each cluster contains one data point ¢, ={x.}

2. Repeat until only one cluster is left:
1. Find a pair of clusters that is closest: min D(c; ;)
2. Merge the clusters c; and ¢; into ¢;,;
3. Remove ¢; and ¢; from the collection C, add c;,;

* Time and space complexity
e Sensitive to noisy data



Dendrogram

* The agglomerative hierarchical clustering algorithms result is commonly displayed
as a tree diagram called a dendrogram.

« Dendrogram a tree diagram for showing taxonomic relationships.
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Example: Hierarchical clustering of genes
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T)

Grid-based (parameters p and

Discretize each dimension of D into p ranges

1.
2.

Determine dense grid cells at level t

Create graph where dense grid cells are connected if they are adjacent

3.

Determine connected components of graph

4.

Return: points in each connected component as a cluster

5.
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Density based clustering DBSCAN

(parameters: radius: Eps, density: T)

* Core point: Border Point
* contains at least T data points within a radius Eps Moise Point

Core Point
 Border point: 0&

* not a core point
 at least one core point within a radius Eps

* Noise point:
* neither a core point nor a border point




Density based clustering DBSCAN
(parameters: radius: Eps, density: T)

Determine core, border and noise points at level (Eps, T);

Create graph in which core points are connected if they are within Eps of one another;

Determine connected components in graph;

Assign each border point to connected component with which it is best connected;

i & L N BE

Return points in each connected component as a cluster;

Border Point

Moise Point Core Point

oy

Aggarwal, Charu C. Data mining: the textbook. Springer, 2015. Chapter 6: cluster analysis, pg 183



DBSCAN properties

Similar to grid-based approaches, except that it uses circular regions as building blocks.
Advantages of DBSCAN:

* Can detect clusters of arbitrary shape.

* Does not require the number of clusters as an input parameter.

* Not sensitive to outliers.

Disadvantages of DBSCAN:

* Computationally expensive in the first step (determining core, border and noise points)
e Susceptible to variations in the local cluster density.

e Struggles with high dimensionality data.



Lab work in Orange

* Comparison of
hierarchical and k-Means
clustering on

* painted data

e ,wine.tab“, where we

compare also to the real
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Similarity / distance measures

* The similarity measure depends on characteristics of the input data:
* Attribute type: binary, categorical, continuous
 Sparseness
« Dimensionality g L
* Type of proximity e & A

Flatiron (M



Distance matrix
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Distance matrix example
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Distance measures

Euchdean
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Same as Euclidean, but only the indexes where both x and v have a
value (not NULL) are used. and the result 1s weighted by the number
of values caleulated. Nulls must be replaced by the missing value
calculator (in dataloader).
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Aggarwal, C. C. (2015). Data mining: the textbook.

Springer. (Chapter 3)
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Homework

e Similarity vs. distance
* List algorithms that are based on distance/similarity



Literature

* Max Bramer: Principles of data mining (2007)
e 14. Clustering

e Aggarwal, Charu C. Data mining: the textbook. Springer, 2015.
Chapter 6: Cluster analysis

* Aggarwal, Charu C. Data mining: the textbook. Springer, 2015.
Chapter 2: Similarity and distances



