

MEDNARODNA PODIPLOMSKA ŠOLA JOŽEFA STEFANA

INFORMATION AND COMMUNICATION TECHNOLOGIES PhD study programme

Data Mining and Knowledge Discovery

Petra Kralj Novak January 21, 2020

http://kt.ijs.si/petra kralj/dmkd3.html

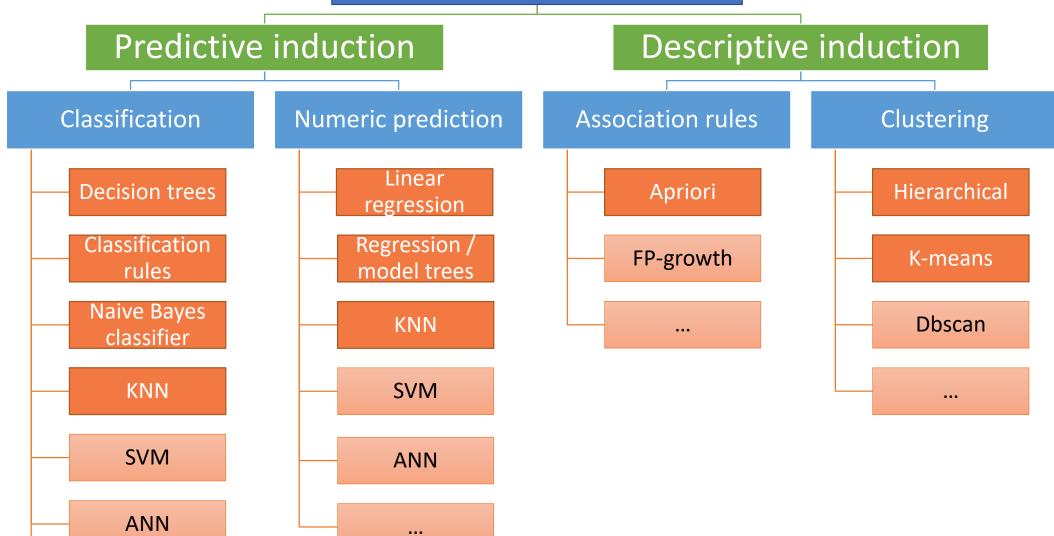
So far ...

- Nov. 11, 2019
 - Basic classification
 - Orange hands on data visualization and classification
- Dec. 11, 2019
 - Fitting and overfitting
 - Data leakage
 - Decision boundary
 - Evaluation methods
 - Classification evaluation metrics: confusion matrix, TP, FP, TN, FN, accuracy, precision, recall, F1, ROC
 - Imbalanced data and unequal misclassification costs
 - Probabilistic classification
 - Naïve Bayes classifier

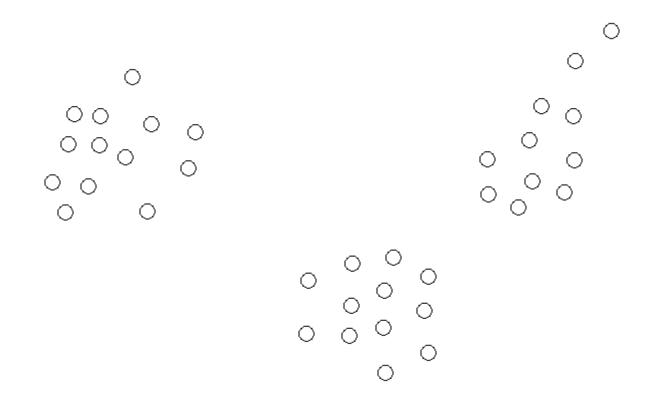
So far ...

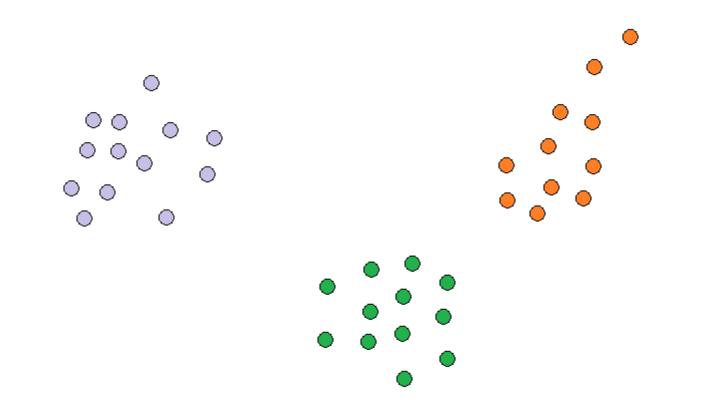
- Dec. 18 2019
 - Naive Bayes classifier
 - Laplace estimate
 - Regression (numeric prediction) and its evaluation
- Jan. 13, 2020
 - Association rules
- Jan. 15, 2020
 - Neural networks

Data mining techniques



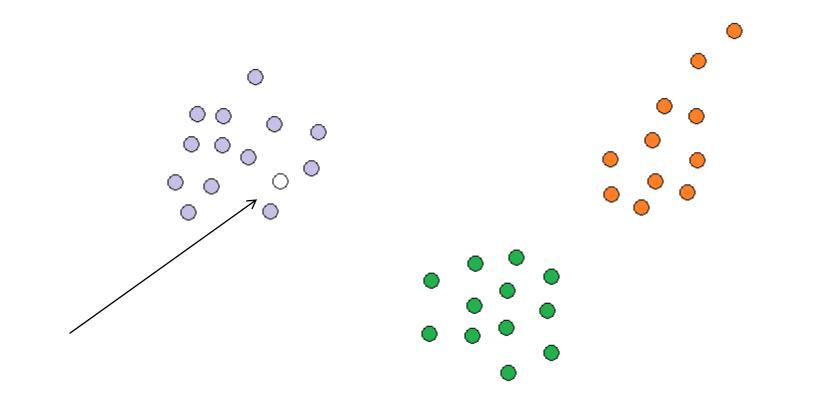
...



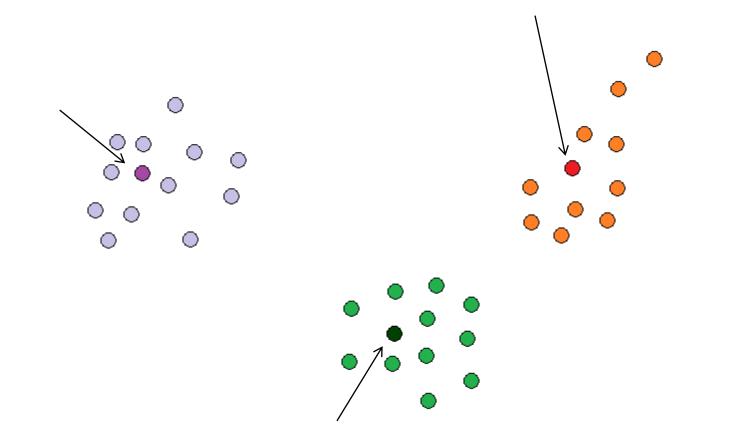


- ... is the process of grouping the data instances into clusters so that objects within a cluster have high similarity but are very dissimilar to objects in other clusters.
- Wish list:
 - Identity clusters irrespective of their shapes
 - Scalability
 - Ability to deal with noisy data
 - Insensitivity to the order of input records

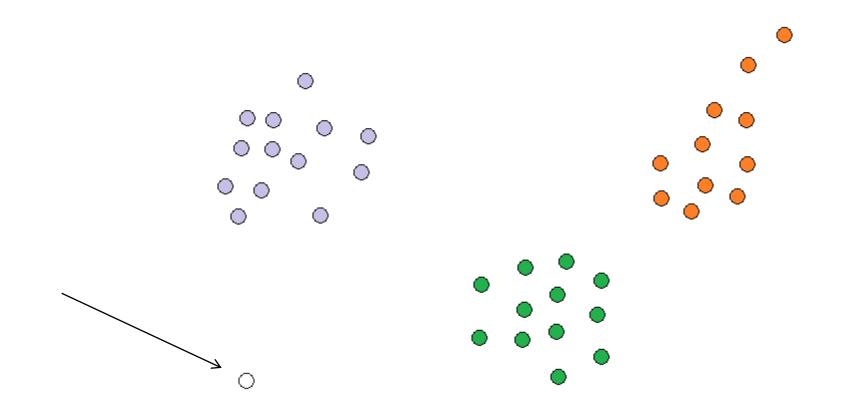
Unsupervised classification



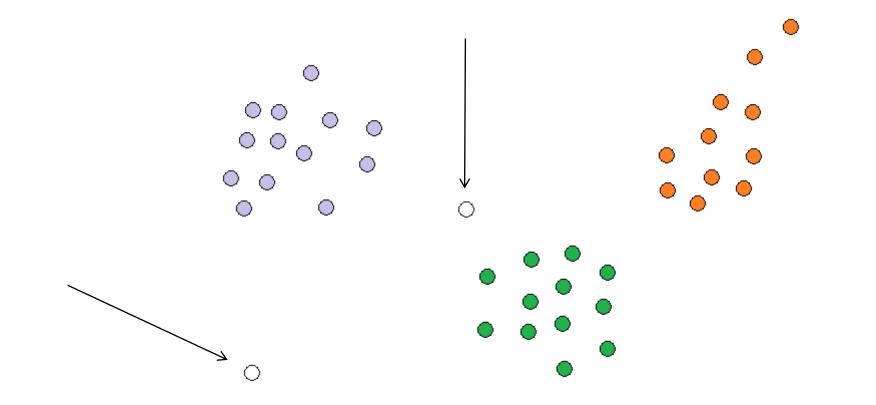
Data summarization: centroid, medoid



Outlier detection



Outlier detection



Applications

- Data mining
 - Unsupervised classification
 - Data summarization
 - Outlier analysis
 - ...
- Customer segmentation and collaborative filtering
- Text applications
- Social network analysis

Clustering web search results

Vivísimo search.vivisimo.com		about products solutions press partners support					
		jaguar the Web Search					
sear ch. wwsinto.com	NEW read the latest news at Clusty.com						
Clustered Results	^	Cluster Panthera onca contains 7 documents. (Details)					
jaguar (178)		Sponsored Results for jaguar, panthera onca					
 <u>Parts</u> (38) <u>Photos</u> (25) <u>Club</u> (25) 		Jaguar Visit the Official Jaguar Site for more info and to find a dealer. www.JaguarUSA.com - Sponsored Listings 1					
 ⊕ > <u>Owners</u> (13) ⊕ > <u>Panthera onca</u> (7) ⊕ > <u>Reviews, Prices</u> (7) > <u>Collection</u> (5) 		1. Jaguar - Wikipedia, the free encyclopedia [new window] [frame] [cache] [pre The jaguar (Panthera onca) (Brazilian Portuguese: onça pintada) is a New W one of four big cats in the Panthera genus, along with the tiger, lion and leopard en.wikipedia.org/wiki/Jaguar - Live 3, Ask 11					
 Classic Jaguar (5) Atari (6) Maya (4) 		 Jaguar [new window] [frame] [cache] [preview] [clusters] Panthera onca. MYSTERIOUS CAT OF THE AMAZON. Of all the big cats, th While some information comes from the wild, most of what is known about jagu www.bluelion.org/jaguar.htm - Ask 6, Live 20 					
 ● Mac (5) ● Overview, History (2) 		3. <u>Jaguar</u> [new window] [frame] [preview] [clusters] Panthera onca Endangered The Jaguar is the largest cat native to the Weste					

Clustering types

• Partitioning

• k-means, k-medoids, k-modes

• Hierarchical

- Agglomerative
- Grid-based
 - Multi-resolution grid structure
 - Efficient and scalable

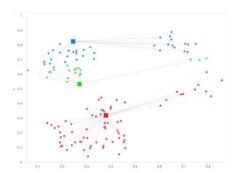
Density-based

- A cluster is a dense region of points, which is separated by low density regions, from other regions of high density
- Algorithms: DBSCAN, OPTICS, DenClue

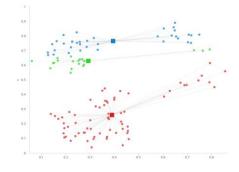
Interactive k-Means (Educational)

K-Means example

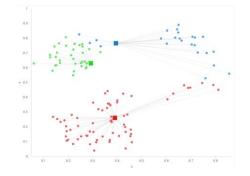
Random initialization



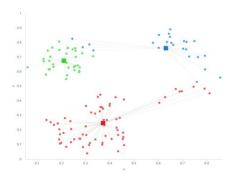
Centroid computation



Assignment of points to the nearest centroid

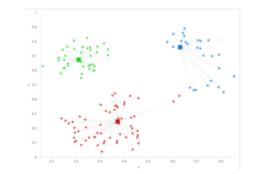


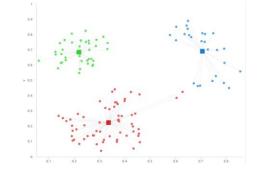
Centroid computation



Assignment of points to the nearest centroid

Centroid computation





K-means

- 1. Choose **k** random instances as cluster centers
- 2. Assign each instance to its closest cluster center
- 3. Re-compute cluster centers by computing the average (aka *centroid*) of the instances pertaining to each cluster
- 4. If cluster centers have moved, go back to Step 2

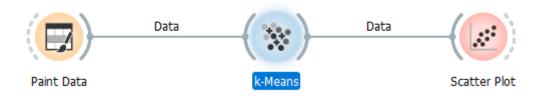
(Equivalent termination criterion: stop when assignment of instances to cluster centers has not changed)

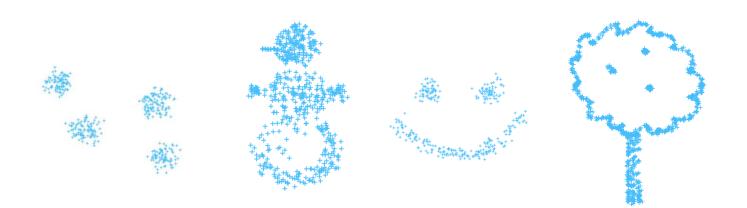
Alternatives: K-medoids, K-modes

- Might get stuck in local minima
- Silhuette for finding the optimal K

Lab exercise: clustering on drawings

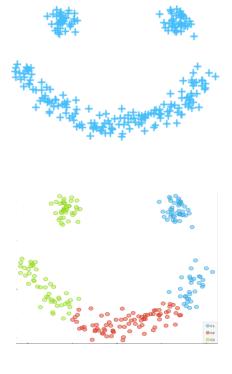
- Draw the following images in PaintData
 - Four snowballs
 - A snowman
 - A smiley face
 - An apple tree
- Compare
 - K-means
 - Hierarchical
 - DB-scan

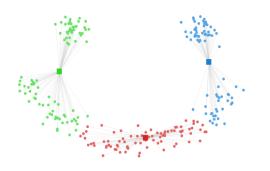




Properties of k-Means

- The number of clusters **k** is fixed in advance
- It is fast, it always converges
- Can converge into a local minima (bad solution because of unlucky start)
- Finds "spherical" shaped clusters
- K-Means will cluster the data even if it can't be clustered (e.g. data that comes from uniform distributions)



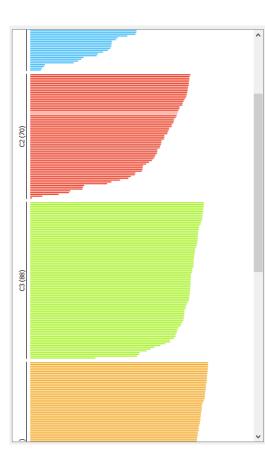


Clustering evaluation

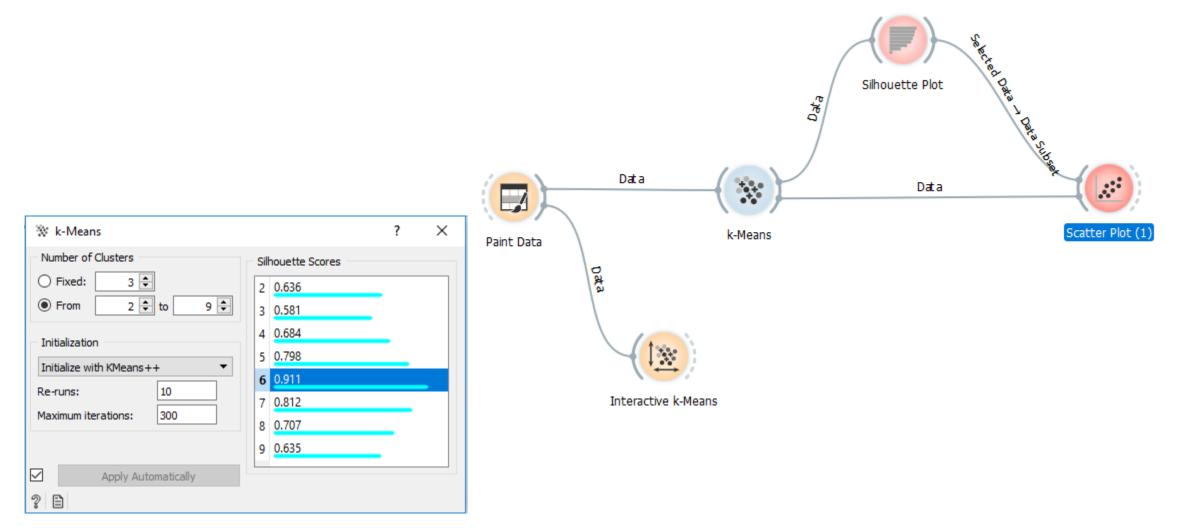
- Clustering analysis doesn't have a solid evaluation metric
- External validation criteria
 - Using the ground truth to evaluate to evaluate the clustering result
- Internal validation criteria
 - Sum of distances to centroids
 - Intracluster to intercluster distance ratio
 - Silhouette coefficient
 - Parameter tuning the "elbow" method

Silhouette coefficient

- The silhouette value is a measure of how similar an object is to its own cluster (cohesion) compared to other clusters (separation).
- For example x_i , its silhouette coefficient is $s_i = (b_i a_i) / \max(a_i, b_i)$
 - a_i average distance between x_i to all other examples in its cluster.
 - b_i average distance between x_i to the examples in the "neighboring" cluster
- The overall silhouette coefficient is the average of the data point-specific coefficients.

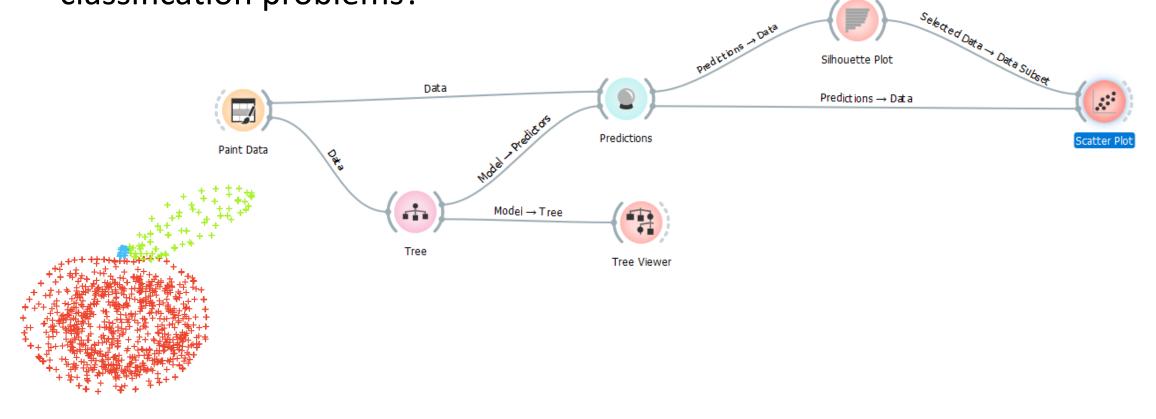


k-Means + Silhouette + "reruns"

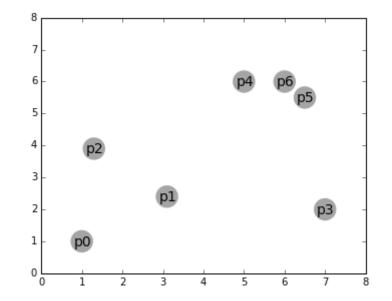


Orange workflow

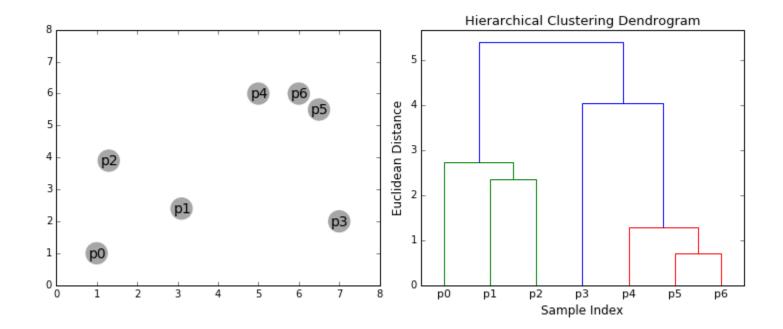
 How can we use the silhouette coefficient for searching for outliers in classification problems?



Agglomerative clustering - example



Agglomerative clustering - dendrogram



Agglomerative clustering

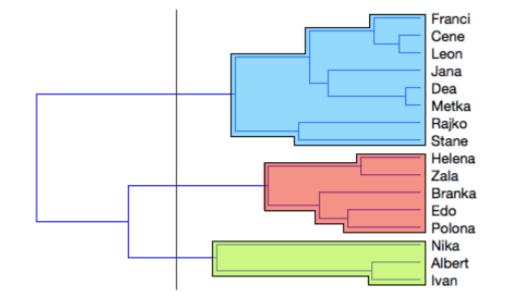
- 1. Start with a collection **C** of **n** singleton clusters
 - Each cluster contains one data point **c**_i ={**x**_i}
- 2. Repeat until only one cluster is left:
 - 1. Find a pair of clusters that is closest: min D(c_i, c_i)
 - 2. Merge the clusters \mathbf{c}_{i} and \mathbf{c}_{j} into \mathbf{c}_{i+j}
 - 3. Remove \mathbf{c}_{i} and \mathbf{c}_{j} from the collection \mathbf{C} , add \mathbf{c}_{i+j}

Some new index, not a sum

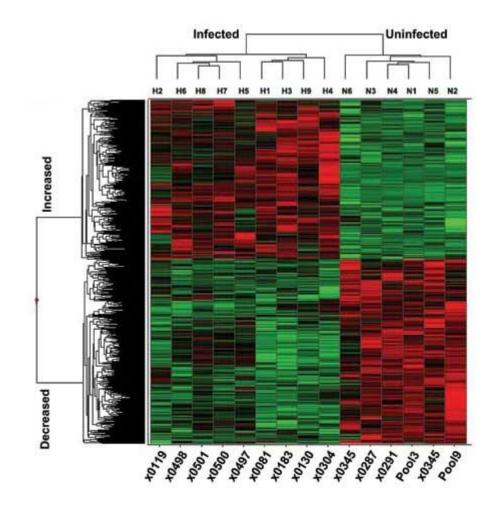
- Time and space complexity
- Sensitive to noisy data

Dendrogram

- The agglomerative hierarchical clustering algorithms result is commonly displayed as a tree diagram called a dendrogram.
- Dendrogram a tree diagram for showing taxonomic relationships.

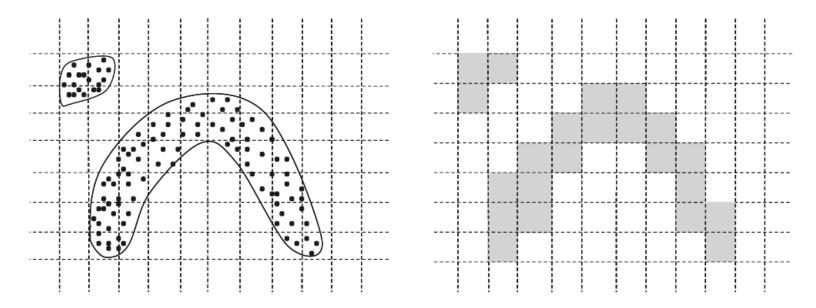


Example: Hierarchical clustering of genes



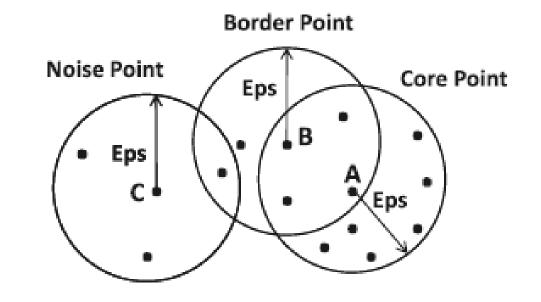
Grid-based (parameters \mathbf{p} and $\mathbf{\tau}$)

- 1. Discretize each dimension of **D** into **p** ranges
- 2. Determine dense grid cells at level τ
- 3. Create graph where dense grid cells are connected if they are adjacent
- 4. Determine connected components of graph
- 5. Return: points in each connected component as a cluster



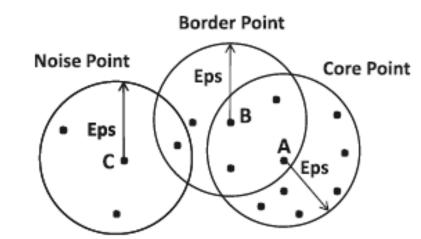
Density based clustering DBSCAN (parameters: radius: *Eps*, density: τ)

- <u>Core point</u>:
 - contains at least τ data points within a radius *Eps*
- Border point:
 - not a core point
 - at least one core point within a radius *Eps*
- Noise point:
 - neither a core point nor a border point



Density based clustering DBSCAN (parameters: radius: *Eps*, density: τ)

- 1. Determine core, border and noise points at level (*Eps*, τ);
- 2. Create graph in which core points are connected if they are within *Eps* of one another;
- 3. Determine connected components in graph;
- 4. Assign each border point to connected component with which it is best connected;
- 5. **Return** points in each connected component as a cluster;



Aggarwal, Charu C. Data mining: the textbook. Springer, 2015. Chapter 6: cluster analysis, pg 183

DBSCAN properties

Similar to grid-based approaches, except that it uses circular regions as building blocks.

Advantages of DBSCAN:

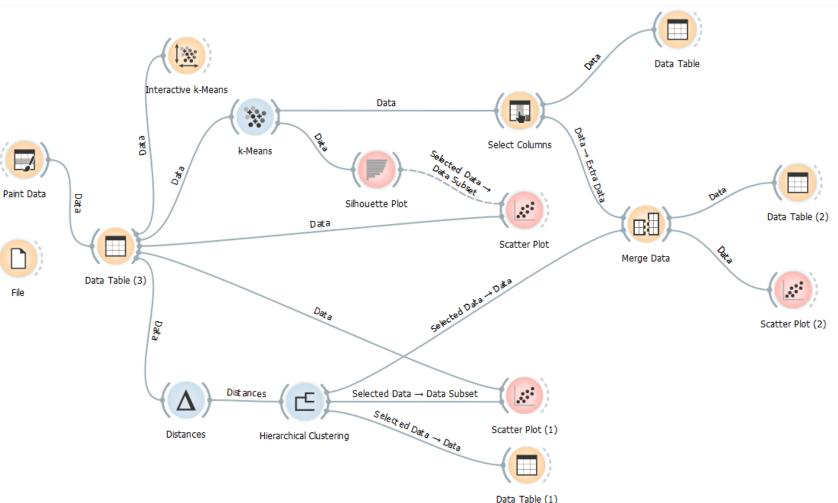
- Can detect clusters of arbitrary shape.
- Does not require the number of clusters as an input parameter.
- Not sensitive to outliers.

Disadvantages of DBSCAN:

- Computationally expensive in the first step (determining core, border and noise points)
- Susceptible to variations in the local cluster density.
- Struggles with high dimensionality data.

Lab work in Orange

- Comparison of hierarchical and k-Means clustering on
- painted data
- "wine.tab", where we compare also to the real classes

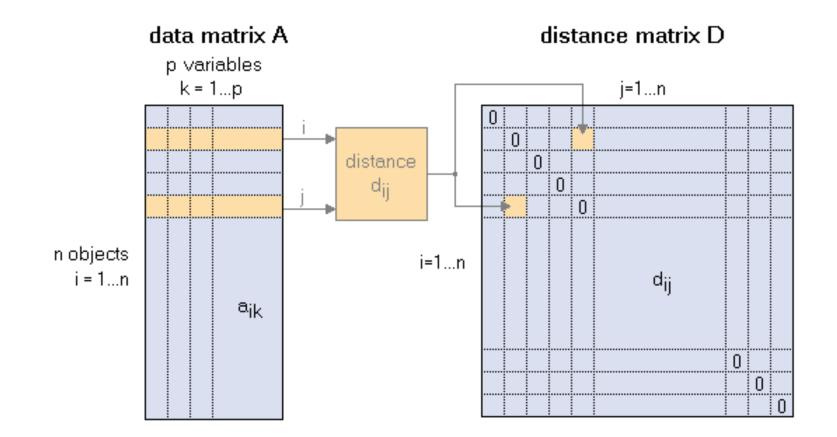


Similarity / distance measures

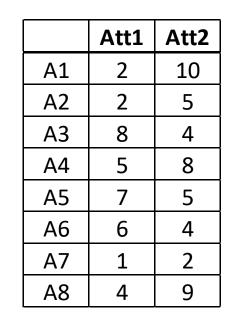
- The similarity measure depends on characteristics of the input data:
 - Attribute type: binary, categorical, continuous
 - Sparseness
 - Dimensionality
 - Type of proximity

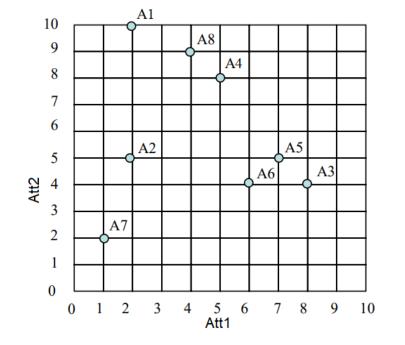


Distance matrix



Distance matrix example





	A1	A2	A3	A4	A5	A6	A7	A8
A1	0	$\sqrt{25}$	$\sqrt{36}$	$\sqrt{13}$	$\sqrt{50}$	$\sqrt{52}$	$\sqrt{65}$	$\sqrt{5}$
A2		0	$\sqrt{37}$	$\sqrt{18}$	$\sqrt{25}$	$\sqrt{17}$	$\sqrt{10}$	$\sqrt{20}$
A3			0	$\sqrt{25}$	$\sqrt{2}$	$\sqrt{2}$	$\sqrt{53}$	$\sqrt{41}$
A4				0	$\sqrt{13}$	$\sqrt{17}$	$\sqrt{52}$	$\sqrt{2}$
A5					0	$\sqrt{2}$	$\sqrt{45}$	$\sqrt{25}$
A6						0	$\sqrt{29}$	$\sqrt{29}$
A7							0	$\sqrt{58}$
A8								0

Euclidian $\longrightarrow Dist(A,B) = \sqrt[2]{(Att1(A) - Att1(B))^2 + (Att2(A) - Att2(B))^2}$

Distance measures

E 111		1
Euclidean	$d(x, y) = \sqrt{\sum (x_i - y_i)^2}$	•
Squared Euclidean	$d(x, y) = \sum (x_i - y_i)^2$	
Manhattan	$d(x, y) = \sum (x_i - y_i)$	
Canberra	$d(x, y) = \sum \frac{ x_i - y_i }{ x_i + y_i }$	
Chebychev	$d(\mathbf{x}, \mathbf{y}) = \max(\mathbf{x}_i - \mathbf{y}_i)$	
Bray Curtis	$d(x, y) = \frac{\sum x_i - y_i}{\sum x_i + y_i}$	
Cosine Correlation	$d(x, y) = \frac{\sum (x_i y_i)}{\sqrt{\sum (x_i)^2 \sum (y_i)^2}}$	
Pearson Correlation	$d(x, y) = \frac{\sum (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\sum (y_i - \overline{y})^2} \sqrt{\sum (y_i - \overline{y})^2}}$	
Uncentered Peason Correlation	$d(x, y) = \frac{\sum x_i y_i}{\sqrt{\sum (y_i - \overline{y})^2} \sqrt{\sum (y_i - \overline{y})^2}}$	
Euclidean Nullweighted	Same as Euclidean, but only the indexes where both x and y have a value (not NULL) are used, and the result is weighted by the number of values calculated. Nulls must be replaced by the missing value calculator (in dataloader).	Aggarwal, C. (Springer. (Cha

🥣 Minkowski distance

$$D\left(X,Y
ight) = \left(\sum_{i=1}^n |x_i-y_i|^p
ight)^{1/p}$$

Aggarwal, C. C. (2015). *Data mining: the textbook*. Springer. (Chapter 3)

Homework

- Similarity vs. distance
- List algorithms that are based on distance/similarity

Literature

- Max Bramer: Principles of data mining (2007)
 - 14. Clustering
- Aggarwal, Charu C. *Data mining: the textbook*. Springer, 2015. Chapter 6: Cluster analysis
- Aggarwal, Charu C. *Data mining: the textbook*. Springer, 2015. Chapter 2: Similarity and distances